95 research outputs found

    Raman Spectroscopy of Graphitic Nanomaterials

    Get PDF
    This chapter showcases some of the versatility of Raman spectroscopic data as applied to the characterization of single (SWNT) and multi-walled (MWNT) carbon nanotubes, few layer graphene and functionalized graphene nanoplatelets, with an emphasis on gas-sensing applications. Specifically, water vapor and a variety of toxic gases (NO, NO2, and SO2 at 500 ppm in gaseous nitrogen) have been targeted for detection over the temperature range 24–200°C. The structure of sp2-hybridized carbon allotropes is reviewed and scanning electron microscopy (SEM) imagery utilized in conjunction with Raman spectroscopy to physically and spectrally characterize the various graphitic nanomaterials studied. A Kataura plot analysis associated with the Radial Breathing Mode (RBM) vibrations of SWNT has been used to identify possible chiralities in the graphitic samples employing 455, 532 and 780 nm laser excitation wavelengths to record the Raman spectra. The effect of temperature on the various Raman vibrational modes (RBM, G+ and G−) has been investigated, along with a determination of the thermal conductivity of SWNT samples and correlation between the purity of the sample and the variation of the slope of the G+ band with increasing laser power

    Studies on the Flotation of Mixed Oxide-Sulphide Ores of Copper from Malanjkhand Deposit India.

    Get PDF
    Bench scale experiments on the benefition of a mixed oxide-sulphide ore of copper from Malanjkhand deposit of Hindusthan Copper Limited, India conducted with certain modifications in collector systems within the limits of existing plant operating conditions yielded better metallurgical results. Sodium isopropyl xanthate (IPX) and sodium diethyldithiocarbamate (DTC) were tried as collectors along with modifiers, such, as, sodium silicate,Magnafloc guargum, and were optimised. All the variables such as concentration, pH of the slurry were stematically studied. Improved metallurgical results were obtained with isopropyl xanthate in combination with sodium silicate guargum at pH 9.0. The results were also equally good with dithiocarbamate,a chemisorbing collector

    Raman Spectroscopy of Graphene, Graphite and Graphene Nanoplatelets

    Get PDF
    The theoretical simplicity of sp2 carbons, owing to their having a single atomic type per unit cell, makes these materials excellent candidates in quantum chemical descriptions of vibrational and electronic energy levels. Theoretical discoveries, associated with sp2 carbons, such as the Kohn anomaly, electron-phonon interactions, and other exciton-related effects, may be transferred to other potential 2D materials. The information derived from the unique Raman bands from a single layer of carbon atoms also helps in understanding the new physics associated with this material, as well as other two-dimensional materials. The following chapter describes our studies of the G, D, and Gâ€Č bands of graphene and graphite, and the characteristic information provided by each material. The G-band peak located at ~1586 cm−1, common to all sp2 carbons, has been used extensively by us in the estimation of thermal conductivity and thermal expansion characteristics of the sp2 nanocarbon associated with single walled carbon nanotubes (SWCNT). Scanning electron microscope (SEM) images of functionalized graphene nanoplatelet aggregates doped with argon (A), carboxyl (B), oxygen (C), ammonia (D), fluorocarbon (E), and nitrogen (F), have also been recorded and analyzed using the Gwyddion software

    Physical Properties of Radio Stars Based on LAMOST Spectral Survey

    Get PDF
    Radio emission has been detected for all types of stars in the Hertzsprung Russell diagram. Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low and medium-resolution spectroscopic surveys provide a good opportunity to obtain the spectroscopic properties of radio stars. We cross-matched big data from the LAMOST DR7 low resolution spectral survey with a catalogue of radio stars, and obtained 449 stellar spectra of 258 stars. We detected 185 spectra with Hα role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3eα emission. There are a total of 108 objects with repeated low resolution spectral observations, of which 63 show variations in the Hα role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3eα line over a long time, about several months. We cross-matched LAMOST DR7 medium resolution spectra with the radio star catalogue. We obtained 1319 LAMOST medium-resolution spectra of the 156 radio stars and then calculated their equivalent widths (EWs role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3eEWs) of the Hα role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3eα line. Among them, 93 radio stars with Hα role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3eα emission were found from the LAMOST medium resolution spectra, and 63 objects showed short and long-term variabilities, especially on a short time scale of approximately 20 min. Finally, we estimated the minimal detectable radio flux of the FAST telescope and provided a scientific plan for studying radio stars

    ESMD Space Grant Faculty Report

    Get PDF
    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.

    Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest

    Get PDF
    Bacteria belonging to the family Brevibacterieae are ubiquitous Gram positive organisms that are responsible for the feet odour and cheese aroma. Brevibacterium mcbrellneri is a relatively new member belonging to Brevibac- terieae. In the current manuscript we discuss isolation of biologically active metabolites from Brevibacterium mcbrellneri. Two aromatic esters were isolated from Brevibacterium mcbrellneri by “Bioassay guided fractiona- tion strategy” and identified as di-(2-ethylhexyl) phthalate and dibutyl phthalate by chemical characterization using biophysical techniques. The phthalate compounds show broad spectrum antibacterial activity and mosquito larvi-cidal activity. Mosquito larvicidal activity has been attributed to inhibition of acetylcholinesterase enzyme activity. These compounds were found to be cytotoxic in multiple cell lines causing cell cycle arrest in G1 phase

    2008 ESMD Space Grant Faculty Project

    Get PDF
    Objectives of this project was to: Gather senior design project ideas and internship opportunities: Relative to space explorationnd In support of the ESMD Space Grant Student Project Support NASAs Educational Framework Outcome 1: Contribute to the development of the STEM workforc

    Power Adaptation Based Optimization for Energy Efficient Reliable Wireless Paths

    Get PDF
    Abstract. We define a transmission power adaptation-based routing technique that finds optimal paths for minimum energy reliable data transfer in multi-hop wireless networks. This optimal choice of the transmission power depends on the link distance between the two nodes and the channel characteristics. Typical energy efficient routing techniques use a transmission power such that the received signal power at the destination minimally exceeds a desired threshold signal strength level. In this paper we argue that such a choice of the transmission power does not always lead to optimal energy routes, since it does not consider differences in the receiver noise levels. We first analyze the optimal transmission power choices for both the ideal case from an information-theoretic perspective, and for realistic modulation schemes. Subsequently we define our technique for transmission power adaptation that can be used in existing routing protocols for multi-hop wireless networks. Our simulations show that current best-known schemes incur upto 10 % more energy costs in low noise environments, and upto 6.67 times the energy costs in high noise environments compared to our proposed scheme.

    Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.

    Get PDF
    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.Funding for the project was provided by the Wellcome Trust for UK10K (WT091310) and DDD Study. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003] - see www.ddduk.org/access.html for full acknowledgement. This work was supported in part by the Intramural Research Program of the National Human Genome Research Institute and the Common Fund, NIH Office of the Director. This work was supported in part by the German Ministry of Research and Education (grant nos. 01GS08160 and 01GS08167; German Mental Retardation Network) as part of the National Genome Research Network to A.R. and D.W. and by the Deutsche Forschungsgemeinschaft (AB393/2-2) to A.R. Brain expression data was provided by the UK Human Brain Expression Consortium (UKBEC), which comprises John A. Hardy, Mina Ryten, Michael Weale, Daniah Trabzuni, Adaikalavan Ramasamy, Colin Smith and Robert Walker, affiliated with UCL Institute of Neurology (J.H., M.R., D.T.), King’s College London (M.R., M.W., A.R.) and the University of Edinburgh (C.S., R.W.)
    • 

    corecore